Nitrogen Fertilizer Sources
Dr. David Gardner, The Ohio State University

Read the label to determine what nitrogen sources are in your fertilizer

General label information →
Analysis (% N - % P₂O₅ - % K₂O) →
Total product weight →
Percentage Nitrogen →

% P₂O₅: P₂O₅ x .44 = % Avail. P →
% K₂O: K₂O x .83 = % Avail. K →
% other nutrients →

Materials used to compose the fertilizer →

Dave’s Premium Fairway
24 - 4 - 12
50 LB
Total Nitrogen (N).. 24.0%
1.6% Ammoniacal Nitrogen
10.8% Water-Insoluble Nitrogen
11.6% Water-Soluble Urea Nitrogen
Available Phosphoric Acid (P₂O₅)....................... 4.0%
Available Potash (K₂O)...................................... 12.0%
Sulfur (S).. 5.0%

Derived from Isobutylene diurea, ammonium phosphate, and potassium sulfate. Potential acidity 0 lb. calcium carbonate equivalent per ton.

Inorganic Nitrogen Sources

Ammonium Nitrate
(NH₄)NO₃
34 - 0 - 0

Ammonium Sulfate
(NH₄)₂SO₄
21 - 0 - 0
24% S

Calcium Nitrate
Ca(NO₃)₂

Monoammonium Phosphate
(NH₄)H₂PO₄
11 - 48 - 0

Diammonium Phosphate
(NH₄)₂HPO₄
18 - 46 - 0

Potassium Nitrate
KNO₃
13 - 0 - 44

Advantages
Disadvantages
• Quick release
• Rapid low temperature response
• Relatively inexpensive
• Liquid or granular forms
• Higher leaching potential
• Short residual (< 30 days)
• Difficult to apply
 • High physiological burn potential
 • Hygroscopic
Natural Organic Sources (list is not inclusive)

Corn Gluten Meal
10 - 0 - 0

Milorganite®
Activated Sewer Sludge
6 - 2 - 0
4% Fe

Ringers®
Feather, Blood Meal
K₂SO₄, Bone Meal
10 - 2 - 6

Sustane®
Composted Turkey Litter
Feather Meal, K₂SO₄
5 - 2 - 4
2% Ca, 2% S

Nature Safe®
Feather Meal, Bone Meal, Blood Meal, Langbeinite, K₂SO₄
10 - 2 - 8

Nature Pure®
Composted Poultry Manure
3 - 5 - 3

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Low burn potential</td>
<td>• Generally higher cost</td>
</tr>
<tr>
<td>• Slow release</td>
<td>• Not effective in cool weather</td>
</tr>
<tr>
<td>• Low leaching potential</td>
<td>• Require microbial activity for release</td>
</tr>
<tr>
<td>• Liquid or granular forms</td>
<td></td>
</tr>
</tbody>
</table>

Quick Release Synthetic Organic Source

Urea
CO(NH₂)₂
46 - 0 - 0

Advantages
- Water Soluble
- Inexpensive
- Rapid low temperature response

Disadvantages
- Moderate burn potential
- Moderate leaching potential
Slow Release Synthetic Organic Sources

- Several are reaction products of urea and formaldehyde. The chain length affects nitrogen release characteristics:

<table>
<thead>
<tr>
<th>Reaction Product</th>
<th>Example Trade Name</th>
<th>Water Soluble</th>
<th>Solubility Class</th>
<th>Microbial Degradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monomethylol urea</td>
<td>CoRon®</td>
<td>Yes</td>
<td>CWSN</td>
<td>Some</td>
</tr>
<tr>
<td>Methylene diurea</td>
<td>Nitro 26-CRN®</td>
<td>Yes</td>
<td>CWSN</td>
<td>Some</td>
</tr>
<tr>
<td>Dimethylene triurea</td>
<td>Triiform®</td>
<td>Yes</td>
<td>CWSN</td>
<td>Some</td>
</tr>
<tr>
<td>Short chain MUP’s (4-5, methylene urea)</td>
<td>Nutralene®</td>
<td>Limited</td>
<td>CWSN</td>
<td>Some</td>
</tr>
<tr>
<td>Long Chain MUP’s (>6, ureaform)</td>
<td>Nitroform®</td>
<td>No</td>
<td>HWIN</td>
<td>Yes</td>
</tr>
</tbody>
</table>

† Cold and hot water insoluble nitrogen (CWIN, HWIN): Slower response, long residual, low burn potential, low water solubility, high cost, low surface runoff and leaching potential, and low frequency of application relative to cold water soluble nitrogen (CWSN)

Monomethylol Urea (CoRon®)

\[
[\text{CO(NH}_2\text{)}_2\text{CH}_2\text{]}_{n}\text{CO(NH}_2\text{)}_2
\]

25 - 0 - 0

Triazone (N-Sure®)

28 - 0 - 0

Urea + formaldehyde + ammonia = cyclic compound that is a clear liquid

Methylene Urea (Nutralene®)

\[
[\text{CO(NH}_2\text{)}_2\text{CH}_2\text{]}_{n}\text{CO(NH}_2\text{)}_2
\]

39 - 0 - 0

Ureaform (Nitroform®)

\[
[\text{CO(NH}_2\text{)}_2\text{CH}_2\text{]}_{n}\text{CO(NH}_2\text{)}_2
\]

38 - 0 - 0

IBDU (Isobutylidene diurea)

\[
[\text{CO(NH}_2\text{)}_2\text{CH}_2\text{]}_{2}\text{C}_4\text{H}_8
\]

31 - 0 - 0

Release is by slow hydrolysis. Larger particle = slower release.

Sulfur Coated Urea

\[
\text{CO(NH}_2\text{)}_2+\text{S}
\]

32 - 0 - 0

12% S. Sulfur coating attenuates nitrogen release.

Polymer Coated Urea

Analysis varies. Polymer coating attenuates nitrogen release.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Long residual (months)</td>
<td>• Slow initial release</td>
</tr>
<tr>
<td>• Low burn potential</td>
<td>• Relatively expensive</td>
</tr>
<tr>
<td></td>
<td>• Require microbial activity for release</td>
</tr>
<tr>
<td></td>
<td>• Not effective in cooler weather</td>
</tr>
</tbody>
</table>