Nitrogen Fertilizer Sources

Dr. David Gardner, The Ohio State University

Read the label to determine what nitrogen sources are in your fertilizer

Gene	ral label information \rightarrow	
Analysis (%)	$I = \% P_0 O_2 = \% K_0 O_1 \rightarrow 0$	

- Total product weight \rightarrow
 - Percentage Nitrogen →

% P_2O_5 : $P_2O_5 \times .44 =$ % Avail. $P \rightarrow$ % K_2O : $K_2O \times .83 =$ % Avail. $K \rightarrow$ % other nutrients \rightarrow

Materials used to compose the fertilizer \rightarrow

Dave's Premium Fair <mark>24</mark> - 4 - 12 50 LB	2
Total Nitrogen (N)	24.0%
1.6% Ammoniacal Nitrogen 10.8% Water-Insoluble Nitrogen	
11.6% Water-Soluble Urea Nitrogen	
Available Phosphoric Acid (P ₂ O ₅)	4.0%
Available Potash (K ₂ O)	12.0%
Sulfur (S)	5.0%

Derived from Isobutylidene diurea, ammonium phosphate, and potassium sulfate. Potential acidity 0 lb. calcium carbonate equivalent per ton.

Ammonium Nitrate NH₄NO₃ 34 - 0 - 0

(NH₄)₂SO₄ 21 - 0 - 0

24% S

Calcium Nitrate Ca(NO₃)₂

Monoammonium Phosphate $(NH_4)H_2PO_4$

11 - 48 - 0

Diammonium Phosphate (NH₄)₂HPO₄ 18 - 46 - 0

Potassium Nitrate KNO₃ 13 - 0 - 44

Advantages	Disadvantages		
Quick release	Higher leaching potential		
 Rapid low temperature response 	 Short residual (< 30 days) 		
 Relatively inexpensive 	Difficult to apply		
Liquid or granular forms	 High physiological burn potential Hygroscopic 		

Natural Organic Sources (list is not inclusive)

Corn Gluten Meal

10 - 0 - 0

Milorganite[®] Activated Sewer Sludge

6 - 2 - 0 4% Fe

Ringers®

Feather, Blood Meal K₂SO₄, Bone Meal 10 - 2 - 6

Sustane® Composted Turkey Litter Feather Meal, K₂SO₄ 5 - 2 - 4 2% Ca, 2% S

Nature Safe[®] Feather Meal, Bone Meal, Blood Meal, Langbeinite, K₂SO₄ 10 - 2 - 8

•

Nature Pure[®] Composted Poultry Manure

3 - 5 - 3

Advantages

- Low burn potential • Slow release
- Low leaching potential Liquid or granular forms

- Disadvantages
- Generally higher cost
- Not effective in cool weather
- Require microbial activity for release

Quick Release Synthetic Organic Source

<u>Advantages</u>

- Water Soluble
- Inexpensive
- Rapid low temperature response

Disadvantages

- Moderate burn potential
- Moderate leaching potential

Urea $CO(NH_2)_2$ 46 - 0 - 0

Slow Release Synthetic Organic Sources

Several are reaction products of urea and formaldehyde. The • chain length affects nitrogen release characteristics:

Reaction Product	Example Trade Name	Water Soluble	Solubility Class [†]	Microbial Degradation		
Monomethylol urea	CoRon®	Yes	CWSN	Some		
Methylene diurea	Nitro 26-CRN®	Yes	CWSN	Some		
Dimethylene triurea	Triaform®	Yes	CWSN	Some		
Short chain MUP's (4-5, methylene urea)	Nutralene®	Limited	CWIN	Yes		
Long Chain MUP's	Nitroform® Powder Blue®	No	HWIN	Yes		

Require microbial activity for release

Not effective in cooler weather

[†] Cold and hot water insoluble nitrogen (CWIN, HWIN): Slower response, long residual, low burn potential, low water solubility, high cost, low surface runoff and leaching potential, and low frequency of application relative to cold water soluble nitrogen (CWSN)

•

•

Low burn potential

Monomethylol Urea (CoRon[®])

 $[CO(NH_2)_2CH_2]_nCO(NH_2)_2$

25 - 0 - 0